Systematic Integration of Bio-materials in Automotive Interiors

Sangeetha Ramaswamy, Sven Schneiders, Volker Niebel, Prof. Thomas Gries

25th September 2015

Institut für Textiltechnik (ITA), RWTH Aachen University

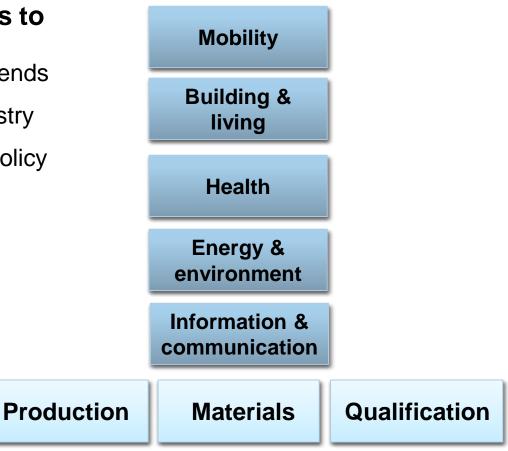
Content

- Institut für Textiltechnik, RWTH Aachen
- Sustainability issues in the automotive industry
- Textiles in Automotive Industry
- Application of renewable raw materials
- Developments
 - Composites with natural fibres + biopolymers
 - Weaving of biopolymer fibres

Institut für Textiltechnik, RWTH Aachen

RWTH Campus: a novel cooperation between industry and university

- Biggest technology campus in Europe
- Establishment of high-tech companies in 15 different clusters
- Exchange of research results, staff, other resources
- approx. 2 bill. € investments until 2020
- approx. 10,000 jobs in research
 & development



Our main topics are our interfaces to

- Social necessities and global mega trends
- · Leading themes of the high-tech industry
- Leading themes of the EU-research policy

INTEGRATED

ITERDISCIPI INARY

Sustainability issues in the automotive industry

Relevant EU Directives

- End of Life Vehicle Directive 2000 in EU:
 - 95% of a vehicle should be recovered
 - 85% of a vehicle should be recycled
- Waste management directive 2008: heirarchy of waste
 - reuse, recycling, energy recovery, disposal

Textiles in Automobile Industry

Current Situation

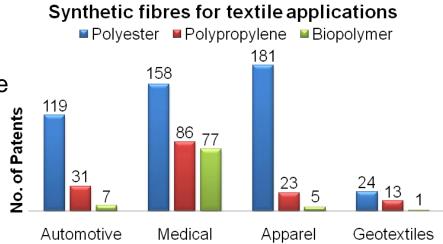
- Up to 30 kg textile per car
- 2/3rd volume automotive interiors
- Popular fibres
 - PP, PES
 - Glass, Natural fibres (NF')
- Popular structures
 - Nonwovens
 - Wovens
 - reinforced composites

Examples of applications

Application of renewable raw materials

Natural fibres in composite applications

- ✓ Specific strength comparable to glass fibre
- Low density
- Low cost
- Easier to recycle
- Negative CO₂ emissions
- Composites with natural fibres as reinforcements are partly bio-based
- Poor adhesion with thermoplastic matrix


Application of natural fibres

Application of renewable raw materials

Polylactic acid (PLA)

- Thermoplastic recyclable / biodegradable
- 60% lesser greenhouse gases as PP
- Range of melting temperature
- Challenges
 - Reduce raw material price
 - Improve process ability and achieve stable quality
 - Transfer of technology to the industry Consumer acceptance
- Approach
 - Development of process technologies
 - Broaden application range

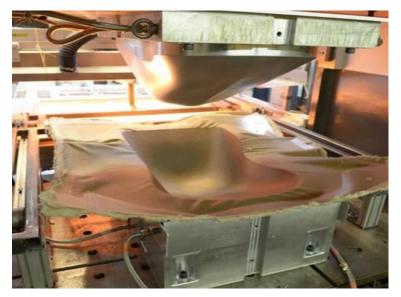
Current Situation

- 96 % of all hemp composites in Germany used in automotive interiors (~5 kg / car)
- The volume of renewable raw materials is limited to 40 %
- Current approach Replace fossil based materials with renewable fibres
 - Cost and resource inefficiency
 - Low technical performance of new products
- Current research focuses on
 - Improving the fiber-matrix interphase
 - Development of demonstrators
 - Automation of the manufacturing process

There is <u>no method with systematic guidelines</u> for replacing fossil based materials with renewable raw materials

Project: NatureWins (2011 - 2012)

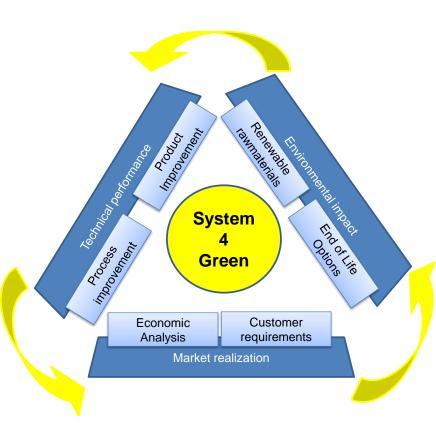
- Objective
 - Development of bio-based composites from 100 % renewable raw materials
- Approach
 - Development of processing technologies for the production of hybrid-yarns and hybridnonwovens



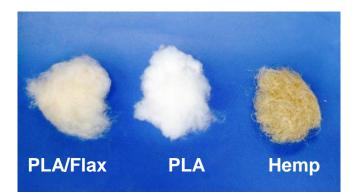
Flax-PLA composites

Project: NatureWins (2011 - 2012)

- Results
 - Biocomposites from long natural fibres (flax, hemp) and thermoplastic biopolymers were developed
 - Mechanical properties comparable with current products in the automotive industry
 - Development of a car seat as functional demonstrator



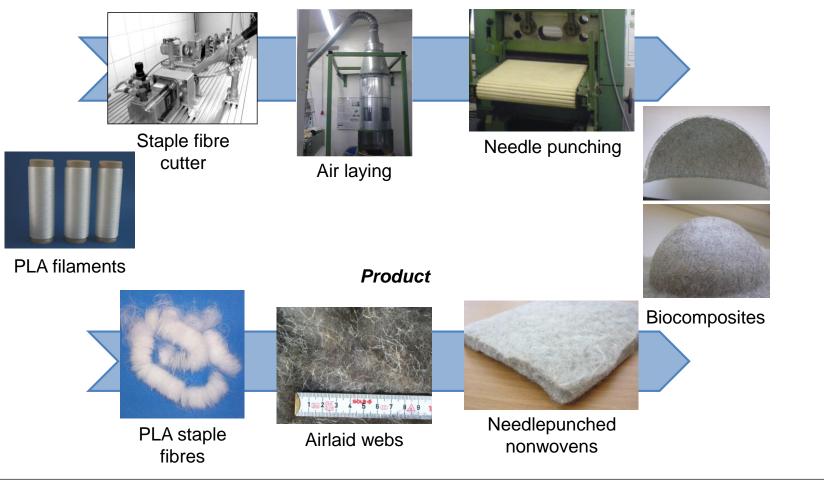
Car seat demonstrator develop from flax-PLA composites


Project: System4Green (2015 – 2016)

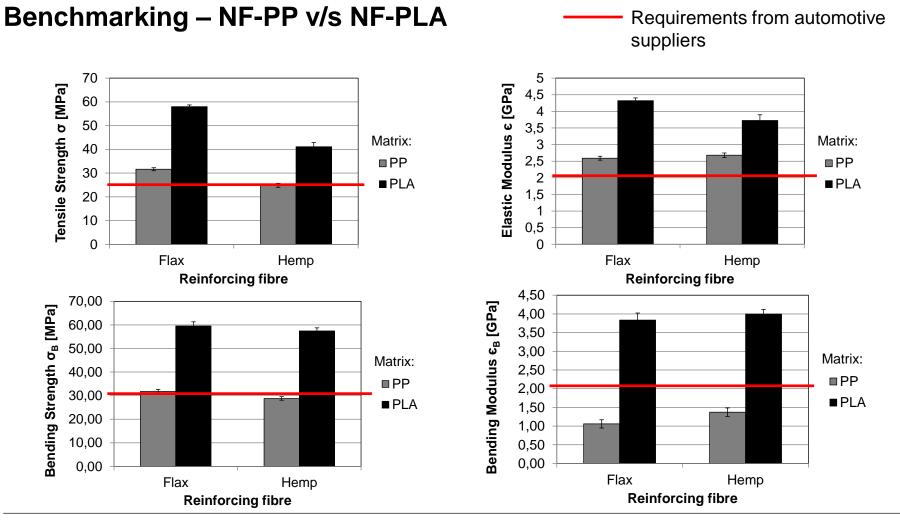
- Motivation
 - Knowledge based Selection of Materials for the Development of Sustainable Products
- Objective
 - Develop the System4Green method for fibrereinforced composites for
 - replacing conventional fossil-based products with up to 100 % renewable raw materials
 - Efficient development of products from renewable raw materials
 - The method will be implemented on 2 case studies in this project

Materials

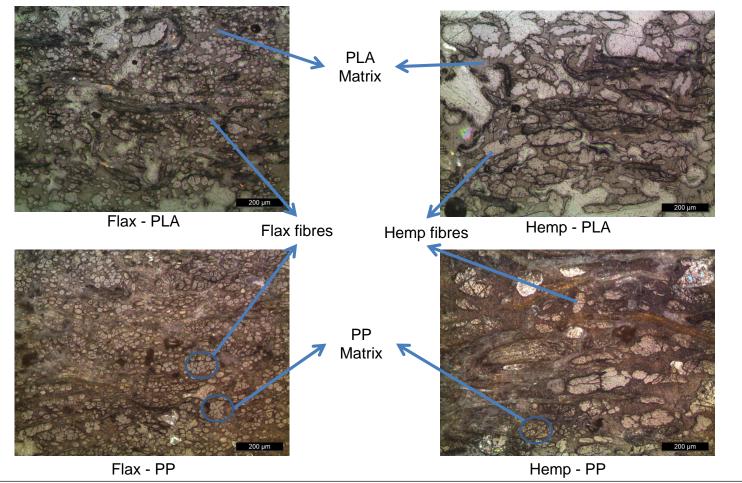
Fibre	PLA	PP	Flax	Hemp
Density [g/cm ³]	1,25	0,91	1,40	1,48
Fineness [dtex]	7,2	7,6	3,9	-
Staple length [mm]	64	50	140	40 - 100
Tensile Strength [MPa]	330	750	720	-



Nonwoven technologies for the production of bio-composites

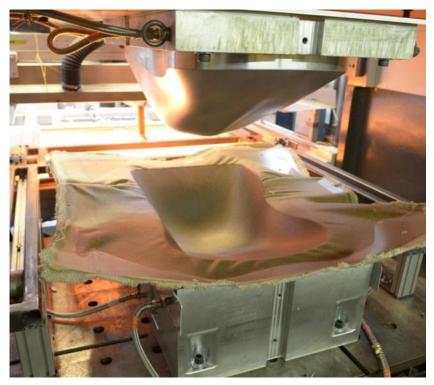

Process chain	 Conversion of PLA filaments into staple fibres Blending of PLA fibres with natural fibres Web formation Web consolidation
Process Optimization	Type of BlendingNeedle parameters
Development of Composites	Compression mouldingBenchmarking

Process chain for the developments of bio-composites



Benchmarking – NF-PP v/s NF-PLA

Summary


- Bio-composites developed from 100 % renewable raw materials
- Bio-composites developed are feasible for application in automotive interiors with regards to their mechanical performance.
- Choice of matrix material had a strong influence on the performance of the composites
- PLA composites exhibiting better properties compared to the PP composites

Future work

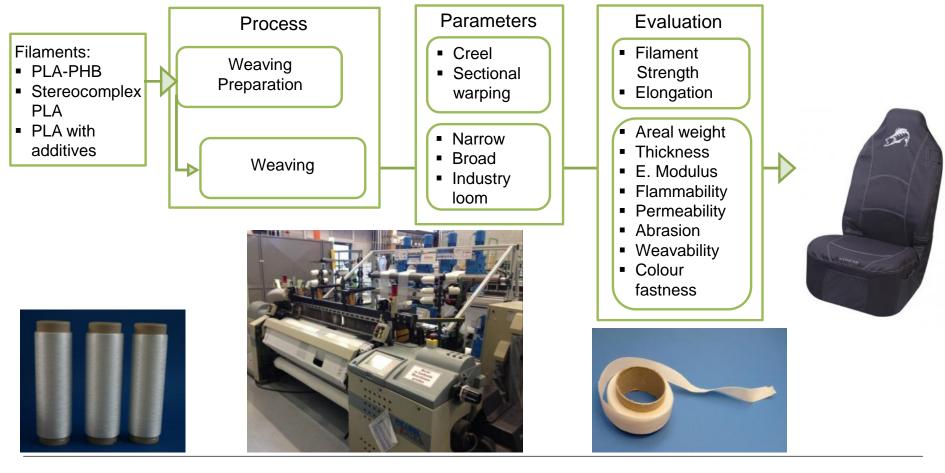
- Benchmarking the composites for other performance requirements of the automotive industry
 e.g. fire retardence, emissions
- Environmental and economic analysis of the composites
- Development of demonstrators in collaboration with industry partners in realtime conditions

Production of car seat from biocomposites

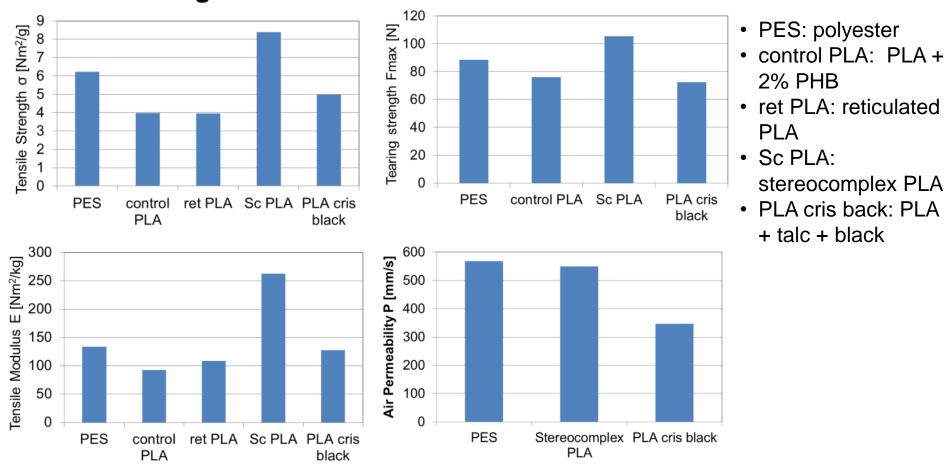
Weaving of biopolymer fibres

Project: BioFibroCar (2013 – 2015)

- Objective
 - Development of textiles for automotive interiors made from renewable and eco-friendly bio-polymers
- Approach
 - New functionalised yarns from biopolymers
 - New additives for anti-microbial and anti-odor properties
 - New PLA compounds with improved properties for application in automotive interiors
 - New textiles from PLA for the automotive interiors


Materials

Material	PES	PLA-PHB (control)	Stereo- complex PLA	Black stereo- complex PLA
Tm [°C]	250-260	130	220	220
Fineness [dtex]	660	660	650	650
Tenacity [cN/tex]	4,0-5,5	2,53	3,23	3,23
Elongation [%]	25-30	28	23	31,5


Weaving of biopolymer fibres

Process chain for weaving of PLA filaments

Weaving of biopolymer fibres

Benchmarking

Benchmarking

Test	Norm	Requirement	Sc-PLA	PLA + talc
Flammability	e.g. MVSS 302 (Motor Vehicle Safety Standards used by Volvo)	< 102 (mm / min)	0 mm / min	0 mm/min
Pilling	DIN EN ISO 12945-2 (modified Martindale)	Grade >=4 at 4000 load cycles	5	4-5
Abrasion resistance	DIN EN ISO 12947-2 (Martindale with 12 KPa load)	>= 5000 load cycles	19000 load cycles	19000 load cycles
Colour behaviour	DIN EN ISO 105- B06	>= Grade 7	8	8
Greyscale	DIN EN ISO 105- B06	>= Grade 3-4	5	5

Weaving of biopolymer fibres

Conclusions

- Weaving of 100 % PLA-PHB fabrics
 - comparable to weaving PES yarns in terms of processability and end breaks
- Benchmarking with polyester reference fabrics currently used as seat covers in automotive industry
 - The mechanical performance of the stereocomplex PLA superior to the reference polyester fabrics.
 - PLA fabrics have a potential for application in the automotive industry as seat cover fabrics

Thank you for your kind attention

Kontakt:

Dipl.-Ing. Sven Schneiders Abteilungsleiter Stapelfaservorbereitung – Vliesstofftechnologie Institut für Textiltechnik (ITA) der RWTH Aachen Tel.: +49 (0)241 80 23400 Email: <u>Sven.Schneiders@ita.rwth-aachen.de</u>

